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Polytopics #28: Breaking Cundy�s Deltahedra Record
George Olshevsky

ADELTAHEDRON is a polyhedron all of whose faces are
equilateral triangles, or �equits,� as I call them for brevity. If we
permit nonconvex figures or figures with intersecting faces, then
the set of deltahedra is infinite, because we may join smaller

deltahedra into larger �composite� deltahedra endlessly. But if we restrict
ourselves just to convex deltahedra, then, perhaps surprisingly, their
number shrinks to eight (a more manageable number).

The eight convex deltahedra were described as such in 1947 by H.
Freudenthal and B. H. van der Waerden in their paper (in Dutch) �On an
assertion of Euclid,� in Simon Stevin 25:115�121, with an easy proof that
the enumeration is complete. (But see also the Addendum at the end of
this paper.) In 1952, H. Martyn Cundy published a short paper titled
�Deltahedra� in the Mathematical Gazette 36: 263�266. Cundy followed
up the Freudenthal & van der Waerden study by relaxing the convexity
restriction but nevertheless restricting the nonconvex deltahedra to those
whose vertices fall into a small number of symmetry-group equivalence
classes (an attempt to keep the number of different deltahedra from
exploding). In particular, he tabulated 17 putative acoptic (see next
paragraph) nonconvex deltahedra with just two �kinds� (symmetry classes)
of vertices. (Jonathan Bowers calls such polyhedra �biform���uniform�
being polyhedra that have all regular faces and just one kind of vertex; see
the 1954 monograph �Uniform Polyhedra� by H. S. M. Coxeter, M.
Longuet-Higgins & J. C. P. Miller, in Proceedings of the Royal Society of
London, Series A, 246: 401�450, which describes and enumerates them
all.) Norman W. Johnson later described all the convex polyhedra with
regular faces (including as subsets the eight convex deltahedra and all the
convex biform polyhedra) in his 1966 paper, �Convex Polyhedra with
Regular Faces,� in The Canadian Journal of Mathematics 18: 169�200.
Cundy described a few biform star-deltahedra but did not attempt to
enumerate them, although he did note the great icosahedron as the unique
uniform star-deltahedron.

An acoptic polyhedron, so called by Branko Grünbaum, is one that may or
may not be convex but whose faces nevertheless do not intersect
(polyhedra with at least one pair of intersecting faces I distinguish with the
term star-polyhedra). There can be no nonconvex acoptic uniform
polyhedra. Nonconvex deltahedra and star-deltahedra, however, proliferate
rapidly with increasing number of vertex-kinds, because one may join
uniform deltahedra and pyramidal Johnson solids to any core biform
deltahedron or uniform polyhedron with mainly equit faces, so for now it
is practical to examine just those that are acoptic and biform. Later one
may attempt to find all the triform ones (I suspect there are many
hundreds), or to characterize the biform star-deltahedra (there are infinitely
many, some of which are astonishingly intricate) and the nonconvex
acoptic biform polyhedra that are not merely deltahedra but have other
kinds of regular faces (there are also infinitely many).

I decided to see whether Cundy�s proposed list of 17 acoptic nonconvex
deltahedra with exactly two �kinds� of vertices was complete. Branko
Grünbaum, in a recent email, made it clear that Cundy did not restrict
himself in his paper to considering acoptic nonconvex deltahedra, in which
case Cundy�s list of 17 is far too short: As noted in the previous paragraph,
there are infinitely many biform star-deltahedra (those in the infinite
classes all have n-gonal antiprismatic symmetries, there being at least two
such deltahedra for every n>6). To be fair, since Cundy published his
paper in 1952 and Coxeter, Longuet-Higgins & Miller didn�t publish their
enumeration of the uniform polyhedra and star-polyhedra until 1954,
Cundy would not necessarily have known of the various uniform star-
polyhedra that may be augmented or excavated with octahedra or suitable
equit-sided pyramids to yield interesting and in many instances stunningly
intricate biform star-deltahedra. But even restricted to acoptic nonconvex
biform figures, Cundy�s list falls a bit short. Furthermore, three of his
figures do not belong in his list: two are triform (they have three kinds of
vertices) and the third is biform but not acoptic, because it has coincident
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edges and vertices. So Cundy actually tabulated only 14 acoptic biform
deltahedra. There are at least eleven more deltahedra that belong in his
table. This article describes the deltahedra that should have appeared
there.

First, let me refine the definition of a Cundy deltahedron to be a
polyhedron with the following characteristics (in order of restrictiveness):

#0: It is a legitimate, non-exotic polyhedron in Euclidean three-space (that
is, its faces are filled planar polygons embedded in E[3], joined together
exactly two per each edge, just as in a cardboard model), without
coincident vertices or edges, and is not a compound of other such
polyhedra.

#1: It is finite: The number of faces must be finite, so that the figure
doesn�t spread through three-space without bound, or fill a region of space
densely with faces, and the faces themselves must also be bounded
polygons that do not extend to infinity. The former condition eliminates
infinite deltahedral towers, of which infinitely many acoptic uniform
examples are conveniently provided by joining uniform n-gonal antiprisms
together endlessly by their bases, for each n>2. Such towers, having the
same arrangement of equits at every vertex, would qualify as regular
�infinite polyhedra,� except that they have edges of two different kinds.

#2: No two adjoining faces may lie in the same plane, although
nonadjoining faces may be coplanar. This, in particular for deltahedra,
eliminates several ways of augmenting tetrahedra onto a central
octahedron, augmenting the cuboctahedron with pyramids on its square
faces, and augmenting the icosidodecahedron with pyramids on its
pentagonal faces. If coplanar adjoining faces were permitted, the number
of convex deltahedra would become infinite, since the equit faces of any
convex deltahedron may be subdivided into meshes of coplanar equits
infinitely many ways.

#3: It is a deltahedron: All its faces are congruent equits; this constrains all
the edges to have the same length, which we can set equal to 1 or 2, etc.,

as needed.

#4: It is nonconvex: It must have at least one reflex dihedral angle.

#5: It is acoptic (simple): No intersecting faces are allowed, nor are
coincident edges and coincident vertices; so it is not a star-deltahedron,
which must have at least one pair of intersecting faces (and almost always
has many more). This eliminates the cuboctahedron whose square faces
are excavated by pyramids, since the apices of the pyramids coincide at
the center (this was figure #10 in Cundy�s original list).

#6: It is biform: All the faces are regular polygons (trivially true for
deltahedra), and the vertices fall into exactly two equivalence classes, so
that all the vertices in either class are transitive on the polyhedron�s
symmetry group, but no symmetry of the polyhedron carries a vertex from
either class into a vertex of the other class.

Condition #6 compels the vertices to lie on two concentric (possibly
coincident) spheres centered at the polyhedron�s center of symmetry (the
point left invariant by any combination of the polyhedron�s symmetry
operations). This means that one may find all the Cundy deltahedra by
symmetrically joining suitable �appendage� polyhedra, with mainly equit
faces, to a uniform �core� polyhedron. It may be necessary to move the
core�s vertices symmetrically to new positions, perhaps onto a sphere with
a different radius, to make the joins work. The vertices of the core
polyhedron all continue to lie on one of two concentric spheres following
the join, so the vertices of the appendage polyhedra that remain after the
join must therefore all lie on the other concentric sphere.

Having vertices on two concentric spheres also naturally brings up the
possibility of a biform �cage� deltahedron. In a cage polyhedron, the
center is surrounded by an inner polyhedron some of whose faces have
been replaced by tunnels to the outer polyhedron, the whole figure
forming what Bonnie Stewart has called a �toroid,� or polyhedron of
genus greater than zero. In the case of a cage deltahedron, the remaining
faces of the inner and outer polyhedron, and the faces connecting the inner
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and outer polyhedron, must all be equits. The combination of being
acoptic and biform and having all equit faces evidently overconstrains the
problem, so that no acoptic biform cage deltahedra exist. Using the Great
Stella program, I examined all the relevant possibilities and found that
none leads to a true biform deltahedral cage. An interesting �near miss� is
the case illustrated here, in which the inner and outer polyhedra start out
as snub icosidodecahedra whose pentagons become the holes, connected
by rings of triangles. Unfortunately, only 40 of the 280 triangles are
equits; the rest are nearly equilateral triangles with interior angles close to
but different from B/3. So the snub icosidodecahedral cage is only quasi-
biform: it has two kinds of vertices, but not all of its faces are regular
polygons. Quasi-biform n-gonal antiprismatic, icosahedral, and snub-
cuboctahedral analogues of this kind of cage also exist. The antiprismatic
�cages� are actually ring polyhedra, of which the heptagonal (n=7)
example appears above right. In this near-miss deltahedron, all the
triangles except the inner teal-colored ones are equits. The inner triangles
are isosceles. The triangular (n=3) antiprismatic ring of this type is a
regular icosahedron with opposite faces removed and replaced by the

triangles of a tall triangular antiprism, and the square (n=4) antiprismatic
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ring is the �snub square antiprism� Johnson solid with square faces
removed and replaced by the triangles of a tall square antiprism. As n
increases, the altitude of the removed antiprism diminishes, so that the
inner triangles become less acute. The inner triangles become equits for a
non-integer number between n=6 and n=7, so there is no integer n for
which all the triangles in the ring are equits, and consequently no such
Cundy deltahedral ring. (The n=7 ring is closest of all to being a Cundy
deltahedron.) Since there thus presently seem to be no toroidal Cundy
deltahedra, all Cundy deltahedra will satisfy Euler�s formula V!E+F=2.

Before proceeding further, let me for completeness list and illustrate (on
pp. 3�5) the eight convex deltahedra of Freudenthal & van der Waerden,
in order of increasing number of faces. Three are regular (because they are
uniform and have just one kind of regular polygon, namely the equit, for a
face), the other five happen to be biform:

[1] Regular tetrahedron.
[2] Triangular bipyramid (or monaugmented tetrahedron in the
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nomenclature developed below).
[3] Regular octahedron (also a square bipyramid, a triangular
antiprism, and a monaugmented square pyramid in the nomenclature
developed below).
[4] Pentagonal bipyramid (or monaugmented pentagonal pyramid in
the nomenclature developed below).
[5] Snub disphenoid (or dispheniated tetrahedron in the nomenclature
developed below).
[6] Triaugmented triangular prism.
[7] Diaugmented square antiprism (or gyroelongated square
bipyramid).
[8] Regular icosahedron (which is also a gyroelongated pentagonal
bipyramid and a diaugmented pentagonal antiprism).

Of these, only [1] and [5] cannot be constructed directly by joining smaller
regular, uniform, or Johnson polyhedra. [2] is a pair of regular tetrahedra
joined at a common face; [3] is a pair of square pyramids joined at their
common square face; [4] is a pair of pentagonal pyramids joined at their
common pentagonal face; [6] is a triangular prism with square pyramids
joined to its three square faces; [7] is a square antiprism with square
pyramids joined to its two square faces; and among the several ways [8]
may be assembled from smaller polyhedra is by joining two pentagonal
pyramids to the bases of a pentagonal antiprism. This exemplifies the
flavor of the operations Cundy used to construct the nonconvex acoptic
deltahedra in his table. A convex deltahedron cannot have more than five
equits at a vertex; the theoretical maximum of five at every vertex is
attained by the regular icosahedron. This accounts for the small number of
members of this subclass of deltahedra. Cundy�s names for [5], [6], and [7]
above are, respectively, dodecadeltahedron, tetracaidecadeltahedron,
and heccaidecadeltahedron; see H. M. Cundy & A. P. Rollett,
Mathematical Models, Oxford University Press, 1951, p. 136.

Anyway, criteria #0 through #6 seem to define a reasonably interesting
collection of polyhedra. It is time to see what they are; their pictures
appear on pp. 6�14, 15, and 17 in the order I have tabulated them. With
the possibilities of ring and cage deltahedra already eliminated, we are

essentially left with the operation of joining (that is, augmenting
outwardly or excavating inwardly) one or more appendage polyhedra to a
uniform core polyhedron, the appendages symmetrically joined to one or
more faces of the core, whose vertices may or may not require relocation
to accommodate the join. The core must be uniform because, e.g., joining
appendages to a biform core would result in at least a triform rather than a
biform polyhedron. If the join is just to one face, then there can be no
vertex relocation, because the core is convex (all uniform acoptic
polyhedra are convex) and rigid. When the join covers a patch of two or
more faces, then one or more edges between faces in the patch may be
eliminated, which permits a certain amount of movement of the core
vertices to make any non-equit triangles into equits. Convex deltahedron
[5] above provides an example of this kind of join, wherein a tetrahedron
is �spheniated� at two opposite edges. These �movable join� operations
will become clearer below, as we construct these kinds of Cundy
deltahedra.

First, note that in augmenting or excavating a suitable uniform core
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polyhedron, the augmentation or excavation must hit each core vertex
identically, otherwise the core will automatically acquire a second kind of
vertex and the resulting figure will immediately be cooked as non-biform.
With regard to joining appendage polyhedra to a core at a single face, the
only possible appendages are pyramids with equit lateral faces, in which
case the base must be the join face, and the octahedron, in which case the
join face on the core polyhedron must be an equit. Adding these
appendages will add just a single kind of vertex to the core. All other
potential appendages, such as the other deltahedra or Johnson solids with
one non-equit face, have more than one plane of vertices above any
potential join face. Hence the resulting deltahedron will automatically be
cooked by the biform limitation. Also, the core uniform polyhedron cannot
have any n-gons as faces for n>5, since there are no corresponding equit-
sided pyramids to join to these faces. Indeed, the core polyhedron can
have at most one kind of non-equit face, to all of which appropriate equit-

sided pyramids must be joined.

In naming the figures we find, I reserve the term �augmented� for a
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polyhedron to which pyramids have been joined with apices away from
the center of symmetry, �excavated� for a polyhedron to which pyramids
have been joined with apices toward the center of symmetry (that is, from
which pyramids have been removed), and �gyraugmented� for a
polyhedron to which octahedra have been joined with the face opposite the
join face located farther from the center of symmetry. The octahedron is
too big to create acoptic �gyrexcavated� biform polyhedra (polyhedra with
the face opposite the join face located closer to the center of symmetry)
with any candidate core polyhedron.

[1] Tetraugmented tetrahedron: A tetrahedron to which four more

tetrahedra have been joined, this figure can also serve as a net for a regular
pentachoron. The symmetry group of this deltahedron is the full
tetrahedral symmetry group [[3,3]]. In Cundy�s original �table of
deltahedra with two kinds of vertex� it was #1. (8!18+12)

[2] Tetragyraugmented tetrahedron: A tetrahedron to which four
octahedra have been joined, this figure can also serve as part of a net of a

dispentachoron. As with [1], its symmetry group is [[3,3]]. It was #2 in
Cundy�s original table. (16!42+28)

[3] Hexaugmented cube: A cube to which six square pyramids have been
joined, this figure can also serve as a net of a Johnson cubic pyramid in
E(4). Its symmetry group is the full octahedral group [[3,4]]. It was #7 in
Cundy�s original table. (14!36+24)

[4] Gyraugmented octahedron: Comprising two octahedra joined at a
common face, here either octahedron acts as an appendage to the other, so
it may also be called �Siamese-twin octahedra.� The symmetry group of
this deltahedron is the full triangular dihedral group [[2,3]]. It was absent
from Cundy�s original table. (9!21+14)

[5] Digyraugmented octahedron: A tower of three octahedra, this
delathedron is an octahedron with two more octahedra joined to two
opposite faces. Here the top and bottom octahedra act as appendages to the
middle one, so it may also be called �Siamese-triplet octahedra.� Its
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symmetry group is the full triangular antiprismatic group [[2+,6]]. It was

also absent from Cundy�s original table. (12!30+20)

[6] Octaugmented octahedron: An octahedron to which eight tetrahedra
have been adjoined, this figure can also serve as a net of the Johnson
octahedral pyramid in E(4) � half of a regular hexadecachoron. This
figure resembles the Stella Octangula (regular compound of two
tetrahedra), but here the sets of coplanar equits are regarded as separate
faces instead of being the externally visible parts of intersecting giant
equits. The potential �tetraugmented octahedron� (an octahedron with
tetrahedra joined to only half its faces) is simply a giant tetrahedron,
because the lateral equits of the pyramids are coplanar by threes with the
four adjacent unaugmented faces of the core octahedron. It is therefore
excluded from the set of Cundy deltahedra. For similar reasons, the
cuboctahedron cannot be used as a core polyhedron in this exercise �
square pyramids either have their apices coincide at the center (if they are
excavated) or have coplanar equits with the core equits (if they are
augmented); this kind of coplanarity also prohibits the �diaugmented� and
�hexaugmented� octahedra, which attempt to use the octahedron�s
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antiprismatic symmetry with augmenting tetrahedra, respectively at two
opposite faces or at the other six faces. The octaugmented octahedron has
the full octahedral symmetry group [[3.4]]. It was #6 in Cundy�s original
table. (14!36+12)

[7] Tetragyraugmented octahedron: An octahedron to which four
octahedra have been adjoined in tetrahedral symmetry, this deltahedron
can also serve as a net of five adjacent octahedra from the regular
icositetrachoron. It has the full tetrahedral symmetry group [[3,3]], and
was absent from Cundy�s original table. Evidently Cundy overlooked the
possibilities of augmenting, excavating, and gyraugmenting symmetric
subsets of the faces of a core uniform polyhedron. Although we can
gyraugment one, two, four, and all eight faces of an octahedron to obtain a
biform deltahedron, we cannot obtain one by gyraugmenting a girdle of
six octahedral faces: The resulting deltahedron is triform. (18!48+32)

[8] Octagyraugmented octahedron: An octahedron to which eight
octahedra have been adjoined, this figure can also serve as part (exactly
9/24) of a net of the regular icositetrachoron. It has the full octahedral

symmetry group [[3,4]], and was #3 in Cundy�s original table.
(30!84+56)

[9] Dodecaugmented dodecahedron: A regular dodecahedron to which
twelve pentagonal pyramids have been joined, this will not fold up in E(4)
as a net of a Johnson dodecahedral pyramid (because it doesn�t exist). It
has the full icosahedral symmetry group [[3,5]], and it was #8 in Cundy�s
original table. (32!90+60)

[10] Dodekexcavated dodecahedron: A regular dodecahedron from
which twelve pentagonal pyramids have been removed. Since the E(4)
Johnson dodecahedral pyramid does not exist, we may excavate Johnson
pentagonal pyramids from a regular dodecahedron without fear of their
apices crashing around the center. Also called a �dimpled dodecahedron,�
this deltahedron, like the dodecaugmented dodecahedron, has the full
icosahedral symmetry group [[3,5]]. It was #9 in Cundy�s original table. It
is also an aggregation (or �stellation�) of the regular icosahedron, since the
equits fall into 20 coplanar sets of three. Considered as an icosahedron
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with 20 �propeller hexagons� as its faces (the �blades� of the propellers
are the externally visible equits; the equit centers of the propellers form an
entirely hidden regular icosahedron whose vertices are the centers of the

�dimples�; one set of three blades happens to be colored red in the
illustration), this polyhedron, having the 20 vertices of the original
dodecahedron, is self-dual and quasi-uniform. (32!90+60)

[11] Tetraugmented icosahedron: A regular icosahedron to which four
tetrahedra have been joined at four tetrahedrally located faces, this figure
has the tetrahedral rotational symmetry group [3,3] and is chiral � it and
its relatives [12] and [13] below make use of the fact that an icosahedron
is also a snub tetratetrahedron, and that the symmetry group [3,3] is a
subgroup of index 5 of the icosahedral rotational symmetry group [3,5].
This deltahedron was absent from Cundy�s table. Altogether, we may
augment an icosahedron on four, eight, twelve, or 20 faces to produce
acoptic biform deltahedra. Alas, if we excavate the icosahedron in these
ways, the resulting figures are not acoptic: The tetrahedra crash around the
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center, because the Johnson icosahedral pyramid exists in E(4).

(16!42+28)

[12] Octaugmented icosahedron: A tetraugmented icosahedron to which
four more tetrahedra have been joined, to the icosahedral faces opposite
the first four appendages; this figure has the ionic (pyritohedral) symmetry
group [3+,4]. This symmetry group is a subgroup of index 5 of the full
icosahedral group [[3,5]]. (20!54+36)

[13] Dodecaugmented icosahedron: A regular icosahedron to which

twelve tetrahedra have been joined, to the twelve faces not augmented to
create [12], this figure likewise has the ionic (pyritohedral) symmetry
group [3+,4]. (24!66+44)

[14] Icosaugmented icosahedron: A regular icosahedron to which 20
tetrahedra have been joined, to all 20 of its faces, this figure can also serve
as the net of a Johnson icosahedral pyramid in E(4)�a chip off the regular
hexacosichoron. It has the full icosahedral symmetry group [[3,5]], and it
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was #4 in Cundy�s original table. (32!90+60)

[15] Tetragyraugmented icosahedron: A regular icosahedron to which
four octahedra have been joined at four tetrahedrally located faces, this
figure is also a very small part of the net of the rectified hexacosichoron in
E(4). Like its augmented counterpart [11] above, it has the rotational
tetrahedral symmetry group [3,3] and is chiral. Also like its counterpart, it
was absent from Cundy�s original tabulation. We can also gyraugment
eight and all 20 faces of the icosahedron, but gyraugmenting twelve results
in a triform deltahedron. (24!66+44)

[16] Octagyraugmented icosahedron: A tetragyraugmented icosahedron
to which four more octahedra have been joined at the faces opposite the
first four appendages, this figure has the ionic (pyritohedral) symmetry
group [3+,4]. Unfortunately, joining twelve octahedra to an icosahedron
where we joined the tetrahedra for [12] above (at the red equits in the
figure) produces a triform deltahedron (the pyritohedral group has 24
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symmetries, but twelve octahedra place 36 vertices in the second sphere).
Like [12] and [15], this deltahedron was absent from Cundy�s original
tabulation. (36!102+68)

[17] Icosagyraugmented icosahedron: A regular icosahedron to which 20
octahedra have been joined, to all 20 of its faces, this deltahedron can also
serve as a small part of the net in E(4) of the icosahedral hexacosihecaton-
icosachoron or rectified hexacosichoron, whose cells are 120 regular
icosahedra and 600 regular octahedra. It has the full icosahedral symmetry
group [[3,5]] and was #5 in Cundy�s original table. In the illustration, the
yellow equits of the octahedral appendages are barely visible, forming
narrow dihedral crevasses. (72!210+140)

[18] Hexaugmented snub cuboctahedron: A snub cuboctahedron to
which six square pyramids are joined; this figure has the octahedral
rotational symmetry group [3,4] and is chiral. It and its excavated
counterpart [19] are the only acoptic biform deltahedra with octahedral
rotational symmetry. It was #14 on Cundy�s original list. (30!84+56)

[19] Hexexcavated snub cuboctahedron: A snub cuboctahedron from
which six square pyramids have been removed, this figure also has the
octahedral rotational symmetry group [3,4] and is chiral. It was #15 on
Cundy�s original list. Great Stella confirms that the excavated square
pyramids do not crash around the center of the figure. (30!84+56)

[20] Dodekexcavated icosidodecahedron: An icosidodecahedron from
which twelve pentagonal pyramids have been removed, this figure has the
full icosahedral symmetry group [[3,5]]. It was #13 in Cundy�s priginal
tabulation. Augmenting, rather than excavating, the icosidodecahedron
renders the pyramid equits coplanar with the icosidodecahedron equits, so
that the figure simply becomes a big icosahedron and violates the
coplanarity condition for adjacent faces. Deltahedron [20] is almost the
same as [17] above, but the latter has the narrow dihedral crevices that
[20] does not. (42!120+80)

[21] Dodecaugmented snub icosidodecahedron: A snub icosidodeca-
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hedron to which twelve pentagonal pyramids have been joined at its
pentagonal faces, this deltahedron and its excavated counterpart [22] are
the only acoptic biform deltahedra with the rotational icosahedral
symmetry group [3.5] and are chiral. It was #16 in Cundy�s original
tabulation. (72!210+140)

[22] Dodekexcavated snub icosidodecahedron: A snub
icosidodecahedron from which twelve pentagonal pyramids have been
removed at its pentagonal faces. It was #17 (the last) in Cundy�s original
tabulation. See also the entry for [21]. (72!210+140)

Here let me break briefly from the tabulation to describe spheniation and
ambiation, related operations used to construct the three remaining Cundy
deltahedra. Those three deltahedra cannot be constructed simply by
augmenting, excavating, gyraugmenting, or gyrexcavating a core
polyhedron with appendage polyhedra the way deltahedra [1] through [22]
were, or by joining together two or more simpler deltahedra or regular-
faced polyhedra.

Whereas augmentation, excavation, gyraugmentation, and gyrexcavation
join each appendage polyhedron to its own single core face, it is also
possible to join a connected group of appendage polyhedra to a larger
patch of faces. When just a single face is involved in a join, vertex
movement and shape changes are unnecessary. But when two or more core
faces are involved, the join, to succeed, may require moving the vertices
of the core and/or changing the shapes of the appendage and/or core faces.
Shape changes may take place because some edges of the patch are lost in
the join, which allows the remaining faces to change shape and/or move to
new positions. To maintain biformity, symmetrically repeated patches
should cover most of the surface of the uniform core, hitting all its vertices
identically. Then the appendages can be applied simultaneously to all the
patch images, and the necessary vertex motions and face-shape changes
will occur symmetrically.

In spheniation, a patch comprises two adjacent faces. Each face is
augmented or excavated, and the apices of the pyramids are then bridged

by a pair of triangles across and above (or below) the edge at which the
two patch faces adjoin. This makes a little wedge of the two triangles from
one pyramid to the other, hence the name �spheniation.� In the process of
constructing spheniated deltahedra, it is typically necessary to change the
shapes of the wedge triangles into equits, which in turn requires moving
the vertices of the patch faces and the appended faces to accommodate
those new shapes. Great Stella has a �spring model� function that changes
the faces of an irregular-faced polyhedron into faces that are as regular as
possible without sacrificing the polyhedron�s topology. This function is
usually sufficient to create a true deltahedron from an initial polyhedron
whose faces are not all equits, assuming that that is possible.

The simplest instance of spheniation may be performed on the tetrahedron,
whose faces fall into two patches of two equits each. Spheniating both
patches simultaneously replaces each equit pair with a wedge of six equits,
and the resulting deltahedron is none other than Freudenthal and van der
Waerden�s [5], the snub disphenoid. In my nomenclature, that figure is the
dispheniated tetrahedron.

The lateral equits of an n-gonal antiprism fall into n congruent pairs that
may be spheniated symmetrically around the figure. This infinite family of
figures was recently discovered by Mason Green and Jim McNeill, and in
particular the case n=3 results in a new Cundy deltahedron, [23], described
below.

Ambiation is a generalization of spheniation to a patch of more than two
faces. Specifically, the patch is a regular n-gon surrounded on all sides by
n equits. Two such patches make up an n-gonal antiprism, for example; six
such square patches and eight such equit patches may be found distributed
symmetrically over the surface of a snub cuboctahedron; and twelve such
pentagonal patches and 20 such equit patches occur on the surface of the
snub icosidodecahedron. We join an n-gonal antiprism to the central n-gon
of each patch (making a little table out of the n-gonal face, hence the
name �ambiation�), then put a wedge of two triangles between each equit
of the patch and the equit of the antiprism that adjoins it. Then we apply
the Great Stella �spring model� function to the polyhedron, to regularize
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the triangles. This adds a net total of 2n equits to the polyhedron per patch.

The astute reader will recognize spheniation as ambiation for the instance
n=2.

The simplest instance of equit (trigonal) ambiation may be performed on
the octahedron, which, being an equit antiprism, has a surface of two equit
patches of four equits each. The resulting �diambiated octahedron� is none
other than the regular icosahedron. The two four-equit patches ambiate
into the two ten-equit patches that make up the icosahedron.

Diambiating the square antiprism at its two squares produces the Johnson
polyhedron known as the snub square antiprism. Diambiating an n-gonal
antiprism for n>4 produces a nonconvex biform polyhedron with the full
n-gonal antiprismatic symmetry group [[2+,2n]]. As n goes to infinity, the
distance between the opposite n-gons of the diambiated n-gonal
antiprism tends to 0. Note that this is a different operation from the
symmetrical n-spheniation of an antiprism around its lateral equit faces
described above. Replacing the two n-gons of a diambiated n-gonal
antiprism with a quasi-uniform n-gonal antiprism of suitable altitude
results in the quasi-biform ring polyhedra described earlier.

Unfortunately, spheniating and ambiating the convex uniform snub
polyhedra does not yield new deltahedra, because the squares and
pentagons remain. But the icosahedron, in its guise as the snub
tetratetrahedron, yields two new Cundy deltahedra when spheniated at six
pairs of equits or ambiated at four patches of equits. One may spheniate
and ambiate certain polyhedra repeatedly (though not endlessly), creating
a variety of triform, quadriform, quinqueform, and so forth, deltahedra and
other acoptic regular-faced polyhedra. Ambiating an icosahedron a second
time (at the four unambiated equits) produces a triform deltahedron.

Here it might behoove me to touch upon a few other operations that might
have yielded biform acoptic deltahedra but thus far have not. First, we
should consider the possibility of appending a set of faces to a core
polyhedron at a disjoint set of faces, which would create a �handle� in the
surface of the figure. Unfortunately, even if this could be done
symmetrically to a uniform core polyhedron, the handle itself requires at
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least two different kinds of vertices (one kind above and one kind below),
and so would yield at best a triform �ansate� deltahedron. Second, we
might augment a face of the core polyhedron and connect the lateral faces
of the resulting pyramid directly to adjoining faces of the core with
triangles. Unfortunately, in all cases the added triangles are too far from
being equits for the �spring model� function to pull them into equits, and
no new Cundy deltahedra result. Third, we might begin with a quasi-
uniform core, that is, a core polyhedron all of whose vertices are of one
kind but whose faces are not all regular polygons. Again this fails to yield
new deltahedra; the �spring model� function pulls them into deltahedra
that are already in the table. This also happens when we ambiate with
appendages other than antiprisms, such as prisms and cupolas. The �spring
model� function simply finds the same deltahedra over again.

[23] Trispheniated octahedron: Produced by spheniating the three pairs
of equits of an octahedron that lie between two opposite faces, this acoptic
biform deltahedron has the rotational symmetry group [2+,6] of an equit
antiprism and is chiral. It was absent from Cundy�s original table, but was

discovered by Mason Green and Jim McNeill. When the octahedron is
thus trispheniated, its vertices shift so that the opposite equits move
slightly apart and rotate relative to one another. Calculating the vertex
coordinates for this figure involves some pretty tedious algebra, so it is
fortunate that Great Stella can perform such calculations effortlessly. Any
acoptic n-gonal antiprism may be n-spheniated to produce a biform
acoptic polyhedron, which Green and McNeill have dubbed a cingulated
n-gonal antiprism. (12!30+20)

[24] Hexaspheniated icosahedron: Six pairs of equits situated cubically
on the icosahedron (these would be the twelve �snub faces� of the
icosahedron as a snub tetratetrahedron) may be symmetrically spheniated
to produce a nonconvex acoptic biform deltahedron with the ionic
(pyritohedral) symmetry group [3+,4]. It was absent from Cundy�s list. As
with [23], calculating the general coordinates of the vertices involves
tedious algebra that Great Stella handles effortlessly. The eight faces of
the icosahedron that remain (colored teal in the illustration) are slightly
rotated from their original positions and their twelve vertices have a
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slightly smaller circumsphere. As far as I know, this is the first published
appearance of this polyhedron, in whose Great Stella construction I was
assisted by Roger Kaufman. (24!66+44)

[25] Tetrambiated icosahedron: Four patches of four equits situated
tetrahedrally on the icosahedron may each be symmetrically ambiated
with a patch of ten equits. This converts the icosahedron into a Cundy
deltahedron with 44 faces (four faces remain from the core icosahedron,
colored teal in the illustrations, plus ten from each of the four ambiations).
It is chiral, with the tetrahedral rotational symmetry group [3,3], and it was
absent from Cundy�s original tabulation. As far as I know, this is the first
published appearance of this polyhedron; I provide two illustrations of it to
better display its shape. (24!66+44)

I believe this tabulation exhausts all the possibilities for nonconvex
acoptic biform deltahedra. Together with Freudenthal and van der
Waerden�s five convex biform deltahedra, we may aver that there are
exactly 30 acoptic biform deltahedra. I have made .stel files of all these,
but readers who own Great Stella might prefer to build their own (it is
quite easy). To build physical models of these figures to the same edge
length would require cutting out and pasting together a hoard of equits, all
from just one simple template(!).

Cundy�s original tabulation included the rhombicuboctahedron augmented
with pyramids on all its squares, along with its excavated counterpart.
These were #11 and #12, respectively, in his list. It should be readily
apparent, however, that these are triform, not biform, deltahedra, since the
squares of a rhombicuboctahedron fall into two different symmetry
classes.

Still remaining to be enumerated are the biform star-deltahedra, the
acoptic triform deltahedra, and the various nonconvex biform polyhedra
and star-polyhedra that do not belong to infinite sets with prismatic

symmetries. I suspect there are many hundreds of acoptic triform
deltahedra, since one may symmetrically augment, excavate, gyraugment,
gyrexcavate, spheniate, or ambiate practically any of the 30 biform
deltahedra, many in more ways than one. And finally, one result of
Freudenthal and van der Waerden�s work is to establish that all n-form
deltahedra for n>2 must be nonconvex.
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Addendum
In reviewing this work, Branko Grünbaum noted (unfortunately, too late
for inclusion in the body of this paper) that Freudenthal and van der
Waerden were preceded in their account of the five nonregular convex
deltahedra by O. Rausenberger�s 1915 paper, titled �Konvexe
pseudoreguläre Polyeder,� in Zeitschrift für mathematischen und
naturwissenschaftlichen Unterricht 46: 135�142. This is currently the
earliest reference to these figures known to me, which mandates revising
some of this paper�s several references to Freudenthal and van der
Waerden�s work.
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